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Abstract
Consider a discrete-time insurance risk model with insurance and financial risks. Within period

i, the net insurance loss is denoted by Xi and the stochastic discount factor over the same time
period is denoted by Yi. Assume that {Xi, i ≥ 1} form a sequence of independent and identically
distributed real-valued random variables with common distribution F ; {Yi, i ≥ 1} are another
sequence of independent and identically distributed positive random variables with common dis-
tribution G; and the two sequences are mutually independent. Under the assumptions that F is
Gamma-like tailed and G has a finite upper endpoint, we derive some precise formulas for the tail
probability of the present value of aggregate net losses and the finite-time and infinite-time ruin
probabilities. As an extension, a dependent risk model is considered, where each random pair of
the net loss and the discount factor follows a bivariate Sarmanov distribution.
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1 Introduction and preliminaries

Consider a discrete-time risk model, where, for every i ≥ 1, an insurer’s net loss (the aggregate
claim amount minus the total premium income) within period i is denoted by a real-valued random
variable (r.v.) Xi; the stochastic discount factor (the reciprocal of the stochastic return rate) over
the same time period is denoted by a positive r.v. Yi; and {(Xi, Yi), i ≥ 1} form a sequence of
independent and identically distributed (i.i.d.) random vectors with marginal distributions F and
G, respectively. In the terminology of [12], {Xi, i ≥ 1} and {Yi, i ≥ 1} represent the corresponding
insurance risks and financial risks, respectively. In this framework, the stochastic discounted value
of aggregate net losses can be specified as

S0 = 0, Sn =
n∑
i=1

Xi

i∏
j=1

Yj , n ≥ 1, (1.1)

∗Corresponding author. E-mail: yyangmath@gmail.com
†E-mail: kcyuen@hku.hk

1



with their maxima
Mn = max

0≤k≤n
Sk, n ≥ 1, M∞ = max

k≥0
Sk.

Clearly, Mn is non-decreasing in n and

0 ≤Mn ≤
n∑
i=1

max{Xi, 0}
i∏

j=1

Yj . (1.2)

It is well known that the right-hand side of (1.2) converges almost surely (a.s.) if −∞ ≤ E lnY1 < 0
and E ln max{X1, 1} <∞, see Theorem 1.6 in [17] and Theorem 1 in [2]. Therefore, Mn converges
a.s. to its maximum M∞, which has a proper distribution function on [0,∞). In this paper we
are interested in the asymptotic behavior of the tail probabilities P(Sn > x), P(Mn > x) and
P(M∞ > x) as x→∞. We remark that P(Mn > x) and P(M∞ > x) coincide with the finite-time
ruin probability within period n and the infinite-time ruin probability, respectively, when x ≥ 0 is
interpreted as the initial wealth of the insurer.

In such a discrete-time risk model, under independence or some certain dependence assumptions
imposed on Xi’s and Yi’s, the asymptotic tail behavior of Sn, Mn and M∞ has been extensively
investigated by many researchers. For some recent findings in the independent risk model, one
can be referred to [14], [15], [10], [13], [9] and [8], among others. In this paper, we restrict the
insurance risks to have a Gamma-like tail.

Throughout the paper, all limit relationships hold for x tending to ∞ unless stated otherwise.
For two positive functions a(x) and b(x), we write a(x) ∼ b(x) if limx→∞ a(x)/b(x) = 1; write a(x) .
b(x) or b(x) & a(x) if lim supx→∞ a(x)/b(x) ≤ 1; and write a(x) = o(b(x)) if limx→∞ a(x)/b(x) = 0.
For two real-valued numbers x and y, denote by x ∨ y = max{x, y}, x ∧ y = min{x, y} and denote
the positive part of x by x+ = x ∨ 0. The indicator function of an event A is denoted by 1A.

A distribution F on R is said to have a Gamma-like tail with shape parameter α > 0 and scale
parameter γ > 0 if there exists a slowly function l(·) : (0,∞) 7→ (0,∞) such that

F (x) = 1− F (x) ∼ l(x)xα−1e−γx. (1.3)

A canonical example of the Gamma-like distribution with parameters α > 0, γ > 0 is the Gamma
distribution with the corresponding parameters, i.e.,

F (x) =
γα

Γ(α)

∫ ∞
x

yα−1e−γydy, x > 0,

where Γ(·) is the Euler Gamma function. More details on the distributions with Gamma-like tails
can be found in [7], which studied the asymptotic tail behavior of the reinsured amounts under
ECOMOR (excédent du coût moyen relatif) and LCR (largest claims reinsurance) reinsurance
treaties. A distribution F on R is said to belong to the class L (γ) with γ ≥ 0, if for any y ∈ R,
F (x − y) ∼ eγyF (x). If γ = 0, the classe L (0) consists all long-tailed distributions, which are
heavy-tailed. If γ > 0, then all distributions in the class L (γ) are light-tailed. In this case, a class
larger than the generalized exponential class L (γ), is that of rapidly varying tailed distributions,
denoted by R−∞. Clearly, if a distribution F has a Gamma-like tail with shape parameter α > 0
and rate parameter γ > 0, then F ∈ L (γ) ⊂ R−∞.

In the case of heavy-tailed insurance risks, there has been a vast amount of literature. If
we denote the product

∏i
j=1 Yj in (1.1) by a weight r.v. Θi, then the investigation on P(Sn >

x), P(Mn > x) and P(M∞ > x) boils down to the study of the asymptotics for the tail probabilities
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of randomly weighted sums and their maximum. In the presence of subexponential insurance risks,
[16] established the asymptotic formula

P(Mn > x) ∼ P(Sn > x) ∼
n∑
i=1

P(ΘiXi > x) =
n∑
i=1

P
(
Xi

i∏
j=1

Yj > x
)

holds for each fixed n ≥ 1, under the conditions that the random weights {Θi, 1 ≤ i ≤ n} are
nonnegative, not degenerate at 0, bounded above, and arbitrarily dependent on each other, but
independent of {Xi, i ≥ 1}.

In the present paper we aim to investigate the asymptotic tail behavior of Sn, Mn and M∞,
under the assumptions that the insurance risks Xi’s have a common Gamma-like tailed distribution
F , and the financial risks Yi’s have have a common distribution G with finite upper endpoint

y∗ = y∗(G) = sup{y : G(y) < 1} <∞. (1.4)

We remark that Theorem 4.3 in [15] and Theorem 2.2 in [13] made some similar investigation in
this direction, and under the condition that Y1 has a finite upper endpoint y∗, they derived many
important and valuable results in the case X1 has a convolution-equivalent or rapidly varying tail.
Precisely speaking, consider a discrete-time risk model, where {Xi, i ≥ 1} and {Yi, i ≥ 1} are two
sequences of i.i.d. r.v.s with common distributions F and G, respectively, and the two sequences are
mutually independent. Assume that the distribution G has a finite upper endpoint y∗. If F ∈ R−∞
and y∗ > 1 with p∗ = P(Y1 = y∗) > 0, then for each fixed n ≥ 1,

P(Mn > x) ∼ pn∗P
( n∑
i=1

yi∗Xi > x
)
. (1.5)

Motivated by [15] and [13], in the present paper we investigate the tail asymptotics for Sn and
Mn in the cases of 0 < y∗ < 1, y∗ > 1 and y∗ = 1, respectively, when F is Gamma-like tailed.
Our obtained results do not need the restriction p∗ > 0. Due to the concrete form of F , our
obtained result in the case y∗ > 1 presents a more accurate formula than (1.5). Further, we also
consider the asymptotics behavior of P(M∞ > x) in the case 0 < y∗ < 1, which, together with the
asymptotic formula for P(Mn > x), leads to a uniform result for both finite-time and infinite-time
ruin probabilities. In addition, an extension that incorporate a certain dependence structure into
the model is considered.

The rest of this paper is organized as follows. Section 2 presents the main results of the present
paper and Section 3 provides an extension for a dependent discrete-time risk model where a certain
dependence is taken into account between insurance and financial risks. All the proofs are displayed
in Section 4.

2 Main results

In this section, we restrict ourselves to the standard framework in which {Xi, i ≥ 1} form a
sequence of i.i.d. real-valued r.v.s with common distribution F ; {Yi, i ≥ 1} form another sequence
of i.i.d. positive r.v.s with common distribution G; and {Xi, i ≥ 1} and {Yi, i ≥ 1} are mutually
independent.

Now we state the main results, in which we denote ψn(x) = p∗E
(
eγMn−1

)
y
−(α−1)
∗ l(x)xα−1e

− γx
y∗ ,

1 ≤ n ≤ ∞. The first theorem derives some asymptotics for the finite-time ruin probability and
the tail probability of the present value of the total net losses up to a finite time.
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Theorem 2.1. Consider the discrete-time risk model defined above. Assume that F is Gamma-like
tailed with shape parameter α > 0 and scale parameter γ > 0 defined in (1.3), and G has a finite
upper endpoint y∗ defined in (1.4). Denote K = p∗/y

α−1
∗ .

(1) If 0 < y∗ < 1, then for each fixed n ≥ 1, E
(
eγSn−1

)
<∞, E

(
eγMn−1

)
<∞, and

P(Sn > x) ∼ KE
(
eγSn−1

)
l(x)xα−1e

− γx
y∗ , P(Mn > x) ∼ ψn(x). (2.1)

(2) If y∗ = 1, then for each fixed n ≥ 1,

P(Mn > x) ∼ P(Sn > x) ∼ Knγn−1(Γ(α))n

Γ(nα)
(l(x))nxnα−1e−γx. (2.2)

(3) If y∗ > 1, then for each fixed n ≥ 1,

P(Mn > x) ∼ P(Sn > x) ∼ Kn
n−1∏
i=1

E
(
e
γX1
yi∗
)
l(x)xα−1e

− γx
yn∗ , (2.3)

where
∏0
i=1(·) = 1 by convention.

We note that in Theorem 2.1 (1) and (2), the assumption y∗ ≤ 1 means that the insurer
invests all his surplus into a risk-free asset and then he receives nonnegative stochastic returns.
Theorem 2.1 (3) considers the case y∗ > 1, which allows the insurer to make both risk-free and
risky investments. Although [15] derived a general result than relation (2.3) to some extent, we
establish a more precise formula for both P(Mn > x) and P(Sn > x) due to the concrete form of
F , and without the restriction p∗ > 0.

Our next result below shows that the second asymptotic relation of (2.1) for the finite-time
probability is uniform over all positive integers {n ≥ 1} in the case 0 < y∗ < 1, which implies the
uniform asymptotics for both finite-time and infinite-time ruin probabilities.

Theorem 2.2. Under the conditions of Theorem 2.1, If 0 < y∗ < 1, then it holds that

P(M∞ > x) ∼ ψ∞(x); (2.4)

further, the second relation of (2.1) holds uniformly for all n ≥ 1. That is

lim
x→∞

sup
n≥1

∣∣∣∣P(Mn > x)

ψn(x)
− 1

∣∣∣∣ = 0.

3 An extension

Undoubtedly, the assumption of complete independence on the two sequences of {Xi, i ≥ 1} and
{Yi, i ≥ 1} is far unrealistic and of less practical relevance, though often appearing in the literature.
In this section, we provide an extension for our main results in Section 2, by incorporating a certain
dependence structure into the risk model. As done in [3], we assume that {(Xi, Yi), i ≥ 1} form
a sequence of i.i.d. random vectors whose components are however dependent. We use a bivariate
Sarmanov distribution to model the dependence structure of (X1, Y1). More generally, [18] proposed
a larger class of absolutely continuous (AC) product distributions, whose dependence structure is
introduced by restricting (X1, Y1) such that its joint distribution is absolutely continuous with
respect to the product distribution FG, i.e.,

P(X1 ≤ x, Y1 ≤ y) =

∫ x

−∞

∫ y

0
η(u, v)F (du)G(dv), x ∈ R, y ∈ (0, y∗],
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where η(·, ·) is a nonnegative measurable function. Then, a bivariate Sarmanov distribution we
consider is obtained when η(x, y) = 1 + θφ1(x)φ2(y), where φ1 and φ2 are two given real-valued
kernel functions and θ is a real parameter satisfying

Eφ1(X1) = Eφ2(Y1) = 0,

and
1 + θφ1(x)φ2(y) ≥ 0 for all x ∈ R, y ∈ (0, y∗]. (3.1)

Trivially, if θ = 0 or φ1(x) ≡ 0, x ∈ R, or φ2(y) ≡ 0, y ∈ (0, y∗], then X1 and Y1 are independent.

Choosing φ1(x) = 1 − 2F (x) and φ2(y) = 1 − 2G(y) for all x ∈ R and y ∈ (0, y∗], leads to the

well-known Farlie-Gumbel-Morgenstern (FGM) distribution.

By Proposition 1.1 in [19], we know that the two kernels are bounded. Precisely speaking,
if (X1, Y1) follows a bivariate Sarmanov distribution, then there exist two positive constants
b1 and b2 such that

|φ1(x)| ≤ b1 and |φ2(y)| ≤ b2 (3.2)

for all x ∈ R and y ∈ (0, y∗].
By using Theorems 2.1 and 2.2, the main result of this section is presented below.

Corollary 3.1. Consider the discrete-time risk model, where {(Xi, Yi), i ≥ 1} are a se-
quence of i.i.d. random vectors with common Sarmanov distribution. Assume that the limit
limx→∞ φ1(x) = d1 exists. Under the conditions of Theorem 2.1, the following assertions
hold with the new K = (p∗ − θd1E(φ2(Y1)1{0<Y1<y∗}))/y

α−1
∗ .

(1) If 0 < y∗ < 1, then the firest relation in (2.1) holds for each fixed n ≥ 1, and second
relation in (2.1) holds uniformly for all n ≥ 1.

(2) If y∗ = 1, then relation (2.2) holds for each fixed n ≥ 1.
(3) If y∗ > 1, then relation

P(Mn > x) ∼ P(Sn > x)

∼ K

y
(n−1)(α−1)
∗

n−1∏
i=1

(
p∗E
(
e
γX1
yi∗
)

+ θd1E
(
φ2(Y1)1{0<Y1<y∗}

)
E
(
e
γφ1(X1)

yi∗

))
l(x)xα−1e

− γx
yn∗

holds for each fixed n ≥ 1.

We remark that the constant K in Corollary 3.1 is nonnegative. Indeed, by Eφ2(Y1) = 0
we have p∗ − θd1E(φ2(Y1)1{0<Y1<y∗}) = p∗(1 + θd1φ2(y∗)) ≥ 0 due to (3.1).

4 Proofs

In this section we present the proofs of the main results.

Proof of Theorem 2.1. For claim (1), we firstly consider the first relation of (2.1).
Denote

T0 = 0, Tn
d
=

n∑
i=1

Xi

n∏
j=i

Yj, n ≥ 1,
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then Tn
d
= Sn, n ≥ 1, where

d
= represents equality in distribution. Clearly, {Tn, n ≥ 0}

satisfies the stochastic equation

T0 = 0, Tn = (Tn−1 +Xn)Yn, n ≥ 1. (4.1)

Similar stochastic recurrence equations can be found in [10]. Therefore, in order to prove
the first relation of (2.1), we only need to verify the relation

P(Tn > x) ∼ KE
(
eγTn−1

)
l(x)xα−1e−

γx
y∗ . (4.2)

We proceed by induction on n. Trivially, relation (4.2) holds for n = 1 by P(T1 > x) =
P(X1Y1 > x) and Lemma 2 in [4], which implies that E(eγT1) < ∞ and FT1 ∈ L (γ/y∗).
Now we inductively assume that (4.2) holds for n = m for some integer m ≥ 1, hence
E(eγTm) < ∞ and FTm ∈ L (γ/y∗). According to whether or not the events (Tm > 0) and
(Xm+1 > 0) happen we divide the tail probability P(Tm +Xm+1 > x) into three parts as

P(Tm +Xm+1 > x) =
3∑
i=1

P(Tm +Xm+1 > x,Ωi) =:
3∑
i=1

Ii, (4.3)

where Ω1 = (Tm > 0, Xm+1 > 0), Ω2 = (Tm > 0, Xm+1 ≤ 0) and Ω3 = (Tm ≤ 0, Xm+1 > 0).
For any 0 < ε < 1 such that 0 < (1 + ε)y∗ < 1, we have that

I1 =

(∫ x
1+ε

0

+

∫ x

x
1+ε

)
F (x− u)P(Tm ∈ du) + P(Tm > x)F (0) =:

3∑
i=1

I1i. (4.4)

We firstly deal with I11. By Theorem 1.5.6 (i) in [1], for any δ > 0 and sufficiently large x,
we have that

l(x− u)(x− u)α−1

l(x)xα−1
≤ 2

(
x− u
x

)α−1−δ

≤ 2

((
ε

1 + ε

)α−1−δ

∨ 1

)

with 0 ≤ u ≤ x/(1 + ε). Then, the dominated convergence theorem gives that

I11 ∼
∫ x

1+ε

0

l(x− u)(x− u)α−1e−γ(x−u)P(Tm ∈ du)

∼ l(x)xα−1e−γxE
(
eγTm1{Tm>0}

)
. (4.5)

As for I12 and I13, by the induction assumption, we have that

I12 + I13 ≤ 2P
(
Tm >

x

1 + ε

)
∼

2KE
(
eγTm−1

)
(1 + ε)α−1

l(x)xα−1e−
γx

y∗(1+ε) . (4.6)

Plugging (4.5) and (4.6) into (4.4) yields that

I1 ∼ l(x)xα−1e−γxE
(
eγTm1{Tm>0}

)
. (4.7)
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As for I3, according to the dominated convergence theorem and F ∈ L (γ), we obtain that

I3 =

∫ 0

−∞
F (x− u)P(Tm ∈ du)

∼ F (x)

∫ 0

−∞
eγuP(Tm ∈ du). (4.8)

Similarly, again by the dominated convergence theorem, the fact that FTm ∈ L (γ/y∗) and
the induction assumption, we have that

I2 ∼ P(Tm > x)E
(
e
γX1
y∗ 1{X1≤0}

)
∼ KE

(
eγTm−1

)
E
(
e
γX1
y∗ 1{X1≤0}

)
l(x)xα−1e−

γx
y∗ . (4.9)

Thus, we derive from (4.3) and (4.7)–(4.9) that

P(Tm +Xm+1 > x) ∼ E
(
eγTm

)
l(x)xα−1e−γx. (4.10)

Therefore, by (4.10) and Lemma 2 in [4], the desired relation (4.2) holds for n = m + 1,
which implies that E

(
eγTm+1

)
<∞.

For the second relation of (2.1), using the identity

Mn
d
=

n∨
k=0

Tk, n ≥ 1,

and Theorem 2.1 in [14], we find that

Mn
d
= Wn, n ≥ 1,

where {Wn, n ≥ 1} constitute a Markov chain defined by

W0 = 0, Wn = (Wn−1 +Xn)+Yn, n ≥ 1. (4.11)

Starting from (4.11) and proceeding along the same lines as above, we can obtain that

P(Wn > x) ∼ KE
(
eγWn−1

)
l(x)xα−1e−

γx
y∗ ,

which coincides with the second relation of (2.1). It ends the proof of Theorem 2.1 (1).

For claim (2), as explained in the above proof, we need to prove the relation

P(Tn > x) ∼ Knγn−1(Γ(α))n

Γ(nα)
(l(x))nxnα−1e−γx. (4.12)

We proceed again by induction on n. Relation (4.12) trivially holds for n = 1 by taking
into account Lemma 2 in [4]. Let us assume that relation (4.12) holds for n = m for some
integer m ≥ 1, which implies that FTm ∈ L (γ). As we have done in (4.3), we split the tail
probability P(Tm +Xm+1 > x) into three parts, denoted by I1, I2 and I3 as well. We firstly
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consider I1. Construct two independent positive conditional r.v.s Xc
m+1 = (Xm+1|Xm+1 > 0)

and T cm = (Tm|Tm > 0), whose tail distributions, by induction assumption, satisfy

P(Xc
m+1 > x) ∼ 1

F (0)
l(x)xα−1e−γx,

P(T cm > x) ∼ Kmγm−1(Γ(α))m

P(Tm > 0)Γ(mα)
(l(x))mxmα−1e−γx.

Then, by Lemma 2.1 in [7], we have that

I1 = P(Tm > 0)P(Xm+1 > 0)P(T cm +Xc
m+1 > x)

∼ γΓ(mα)Γ(α)

Γ((m+ 1)α)
· K

mγm−1(Γ(α))m

Γ(mα)
(l(x))m+1x(m+1)α−1e−γx

=
Kmγm(Γ(α))m+1

Γ((m+ 1)α)
(l(x))m+1x(m+1)α−1e−γx. (4.13)

According to the dominated convergence theorem, we obtain from FTm ∈ L (γ) and the
induction assumption that

I2 ∼
Kmγm−1(Γ(α))m

Γ(mα)
(l(x))mxmα−1e−γxE

(
eγX11{X1≤0}

)
= o(1)(l(x))m+1x(m+1)α−1e−γx. (4.14)

Analogously,

I3 ∼ l(x)xα−1e−γxE
(
eγTm1{Tm≤0}

)
= o(1)(l(x))m+1x(m+1)α−1e−γx. (4.15)

From (4.3) and (4.13)–(4.15) we obtain that

P(Tm +Xm+1 > x) ∼ Kmγm(Γ(α))m+1

Γ((m+ 1)α)
(l(x))m+1x(m+1)α−1e−γx,

which, by Lemma 2 in [4], leads to the desired relation (4.12) holding for n = m + 1. This
ends of Theorem 2.1 (2).

For claim (3), relation (2.3) can be derived by using a similar argument as that of Theorem
2.1 (1). Below, we show the asymptotic formulae for P(Mn > x) which is the refinement of
relation (1.5). By (1.5), we only need to prove the relation

P
( n∑
i=1

yi∗Xi > x
)
∼
∏n−1

i=1 E
(
e
γX1
yi∗
)

y
n(α−1)
∗

l(x)xα−1e
− γx
yn∗ . (4.16)

As in the proof of Theorem 2.1 (1), relation (4.16) can be proved by proceeding with induc-
tion. 2
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Proof of Theorem 2.2. We firstly prove the asymptotic relation (2.4) for the infinite-
time ruin probability. For simplicity, for each n ≥ 0, define nonnegative r.v.s

ξn =
∞∑

i=n+1

yi∗Xi+. (4.17)

Clearly, by (1.2), for all n ≥ 1,
0 ≤Mn ≤ ξ0 − ξn. (4.18)

Notice that ln y∗ < 0 and E ln(X1 ∨ 1) <∞, then by Theorem 1.6 in [17], Mn converges a.s.
to a limit M∞ as n → ∞. Next, we show that E

(
eγM∞

)
< ∞, motivated by an idea in [5],

see also a related discussion in the proof of Theorem 3.2 in [11]. Let Z be a nonnegative r.v.,
independent of {Xi, i ≥ 1} and {Yi, i ≥ 1}, with tail distribution

FZ(x) ∼ x2α−1e−
γx
y∗ .

Clearly, E(eγZ) <∞ due to 0 < y∗ < 1. Then, similarly to the proof of (4.10), we have that

P((Z +X1+)y∗ > x) ∼
E
(
eγZ
)

yα−1
∗

l(x)xα−1e−
γx
y∗ = o(FZ(x)).

Hence, there exists some x0 > 0 large enough such that for all x ≥ x0,

P((Z +X1+)y∗ > x) ≤ FZ(x).

Construct a new nonnegative conditional r.v. Zc = (Z|Z > x0). Clearly,

(Zc +X1+)y∗
d

≤ Zc, (4.19)

where
d

≤ means that for all x ≥ 0,

P((Zc +X1+)y∗ > x) ≤ P(Z > x|Z > x0).

Similarly,

(Zc +X2+)y∗
d

≤ Zc,

which, together with (4.19), leads to

((Zc +X2+)y∗ +X1+)y∗
d

≤ Zc.

Thus, by (4.18), M1 ≤ y∗X1+

d

≤ Zc and M2 ≤ y∗X1+ + y2
∗X2+

d

≤ Zc. Repeating these

iterations we obtain Mn

d

≤ Zc for every n ≥ 1. Letting n→∞ yields

M∞ ≤ ξ0

d

≤ Zc,

where ξ0 is defined in (4.17). This implies that

E
(
eγM∞

)
≤ E

(
eγξ0
)
<∞, (4.20)
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because of FZc(x) = FZ(x)/FZ(x0) for all x ≥ x0 and E(eγZ) < ∞. Then, by (4.20), the
dominated convergence theorem, we have that

lim
n→∞

E
(
eγMn−1

)
= E

(
eγM∞

)
,

and by (4.20) and Jensen’s inequality,

1 ≤ E
(
eγξn−1

)
= E

(
eγξ0
)yn−1
∗ ≤

(
E
(
eγξ0
))yn−1

∗ → 1, n→∞.
For any ε > 0 such that 0 < (1 + ε)y∗ < 1 and arbitrarily fixed ȳ ∈ ( 3

√
y∗, 1) (implying

y∗ < ȳ3 < 1), by the above two equations, we can choose a sufficiently large integer n0 ≥ 3
such that ∣∣E(eγMn0−1

)
− E

(
eγM∞

)∣∣ ≤ ε, (4.21)

E
(
eγξn0−1

)
≤ 1 + ε, (4.22)

and
∞∑

i=n0+1

ȳi < 1. (4.23)

For the upper bound of (2.4),

P(M∞ > x) ≤ P(Mn0 + ξn0 > x)

=

(∫ x
1+ε

0

+

∫ ∞
x

1+ε

)
P(Mn0 > x− u)P(ξn0 ∈ du)

=: J1 + J2. (4.24)

As done in (4.5), by recalling the definition of ψn(x) and using the second relation of (2.1)
in Theorem 2.1, (4.21), the dominated convergence theorem and (4.22), we have that

J1 ∼
∫ x

1+ε

0

ψn0(x− u)P(ξn0 ∈ du)

≤ (1 + ε)ψ∞(x)

∫ x
1+ε

0

l(x− u)(x− u)α−1

l(x)xα−1
e
γu
y∗ P(ξn0 ∈ du)

∼ (1 + ε)ψ∞(x)E
(
eγξn0−1

)
≤ (1 + ε)2ψ∞(x). (4.25)

We next deal with J2. For any δ > 0, by (4.23) and F ∈ R−∞, we have that for sufficiently
large x,

P(ξn0 > x) ≤ P
( ∞∑
i=n0+1

yi∗Xi+ > x
∞∑

i=n0+1

ȳi
)

≤
∞∑

i=n0+1

F
(( ȳ

y∗

)i
x
)

≤ 2F
(( ȳ

y∗

)3

x
) ∞∑
i=n0+1

( ȳ
y∗

)−(i−3)δ

∼ C0l(x)xα−1e−γ(
ȳ
y∗ )

3
x,
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where C0 = 2
(
ȳ
y∗

)3(α−1)∑∞
i=n0+1

(
ȳ
y∗

)−(i−3)δ
<∞, and in the third step we used F (y)/F (x) ≤

(1 + ε)(y/x)−δ for any ε > 0, δ > 0 and sufficiently large y ≥ x, see Theorem 1.2.2 in [6] or
(2.1) in [15]. This yields that

J2 ≤ P
(
ξn0 >

x

1 + ε

)
.

C0

(1 + ε)α−1
l(x)xα−1e−

γ
1+ε(

ȳ
y∗ )

3
x

= o(1)l(x)xα−1e−
γx
y∗ , (4.26)

where the last step holds by taking account of the fact

1

1 + ε

(
ȳ

y∗

)3

=
1

y∗
· 1

(1 + ε)y∗
· ȳ

3

y∗
>

1

y∗
.

Plugging (4.25) and (4.26) into (4.24), we obtain that

P(M∞ > x) . (1 + ε)2ψ∞(x).

For the lower bound of (2.4), by the second relation of (2.1) in Theorem 2.1 and (4.21),
we derive that

P(M∞ > x) ≥ P(Mn0 > x) ∼ ψn0(x) ≥ (1− ε)ψ∞(x).

Therefore, the desired relation (2.4) follows by the arbitrariness of ε > 0. It claims the
first part of Theorem 2.2.

Now we prove that the second relation of (2.1) holds uniformly for all n ≥ 1. For any
positive x and any N ≥ 2 we have that

sup
n≥1

P(Mn > x)

ψn(x)
≤

(
N−1∨
n=1

P(Mn > x)

ψn(x)

)
∨

(
∞∨
n=N

P(M∞ > x)

ψn(x)

)

≤

(
N−1∨
n=1

P(Mn > x)

ψn(x)

)
∨

(
P(M∞ > x)

ψ∞(x)
·
E
(
eγM∞

)
E
(
eγMN−1

)) .
According to the second relation of (2.1) and (2.4), we obtain that

lim sup
x→∞

sup
n≥1

P(Mn > x)

ψn(x)
≤ 1 ∨

E
(
eγM∞

)
E
(
eγMN−1

) .
The upper estimate follows now from the last inequality by letting N ↑ ∞ and (4).

Similarly, for the lower bound,

inf
n≥1

P(Mn > x)

ψn(x)
≥

(
N−1∧
n=1

P(Mn > x)

ψn(x)

)
∧

(
∞∧
n=N

P(MN > x)

ψn(x)

)

≥

(
N−1∧
n=1

P(Mn > x)

ψn(x)

)
∧

(
P(MN > x)

ψN(x)
·
E
(
eγMN−1

)
E
(
eγM∞

) ) .
11



Using the second relation of (2.1), we have that

lim inf
x→∞

inf
n≥1

P(Mn > x)

ψn(x)
≥ 1 ∧

E
(
eγMN−1

)
E
(
eγM∞

) .
Therefore, the lower bound is derived also by letting N ↑ ∞ and (4). This completes the
proof of Theorem 2.2. 2

Proof of Corollary 3.1. Clearly, the recursive equations (4.1), (4.11) and the

identities Sn
d
= Tn, Mn

d
= Wn for every n ≥ 1 still hold, due to the i.i.d. assumption for the

sequence {(Xi, Yi), i ≥ 1}. For each fixed n ≥ 1, the tail probability P(Tn > x) can be
separated into four parts as

P(Tn > x) = P((Tn−1 +Xn)Yn > x)

= (1 + θb1b2)P((Tn−1 +X∗)Y ∗ > x)− θb1b2P((Tn−1 + X̃∗)Y ∗ > x)

−θb1b2P((Tn−1 +X∗)Ỹ ∗ > x) + θb1b2P((Tn−1 + X̃∗)Ỹ ∗ > x)

=: (1 + θb1b2)K1n − θb1b2K2n − θb1b2K3n + θb1b2K4n, (4.27)

where X∗, X̃∗, Y ∗ and Ỹ ∗ are four independent r.v.s, independent of {(Xi, Yi), i ≥ 1}, with

distributions F, F̃ , G and G̃, respectively, defined by

F̃ (dx) =

(
1− φ1(x)

b1

)
F (dx) and G̃(dy) =

(
1− φ2(y)

b2

)
G(dy), x ∈ R, y ∈ (0, y∗). (4.28)

Here, b1 and b2 are two large positive constants defined in (3.2) such that |φ1(x)| ≤ b1 −
1, |φ2(y)| ≤ b2 − 1 for all x ∈ R and y ∈ (0, y∗]. Since limx→∞ φ1(x) = d1 and by (4.28) we
have that

F̃ (x) =

∫ ∞
x

(
1− φ1(u)

b1

)
F (du) ∼

(
1− d1

b1

)
F (x),

Ỹ ∗ has the same upper endpoint y∗ as that of Y1, and

P(Ỹ ∗ = y∗) = p∗ +
1

b1

E
(
φ2(Y1)1{0<Y1<y∗}

)
≥ 0,

for some large b1. Hence, when n = 1, by Lemma 2 in [4],
K11 ∼ p∗

yα−1
∗

l(x)xα−1e−
γx
y∗ ,

K21 ∼ (1− d1

b1
) p∗
yα−1
∗

l(x)xα−1e−
γx
y∗ ,

K31 ∼
(
p∗ + 1

b2
E
(
φ2(Y1)1{0<Y1<y∗}

))
1

yα−1
∗

l(x)xα−1e−
γx
y∗ ,

K41 ∼ (1− d1

b1
)
(
p∗ + 1

b2
E
(
φ2(Y1)1{0<Y1<y∗}

))
1

yα−1
∗

l(x)xα−1e−
γx
y∗ .

(4.29)

Plugging (4.29) into (4.27) yields

P(S1 > x) = P(T1 > x) ∼ Kl(x)xα−1e−
γx
y∗ .

When 0 < y∗ < 1, as in the proof of Theorem 2.1 (1), proceeding with induction according
to (4.27) leads to the desired relation (2.1).
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By the same argument, the results in the other cases can also be derived. 2
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